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One of the results obtained from thermodynamic simulation of recondensation of

the source chondritic material (1,2) is that at 1500-1800 K it's possible to form iron-rich

olivine by reaction between enstatite, metallic iron and water vapor in the case of

[H20]/[H2] _0.1 (Fig. 1 in [2]). This could be reached if the gas depletion in hydrogen

is 200-300 times relative to solar abundance. To get this range of depletion one needs

some source material more rich in hydrogen than the carbonaceous CI material which

is the richest in volatiles among chondrites. In the case of recondensation at impact

heating and evaporation of colliding planetesimals composed of CI material (3), we

obtain insufficiently high value of [H2]/[H20] ratio. In the present paper we consider

some possible source materials and physical conditions necessary to reach gas

composition with [H2]/[H20] -10 at high temperature.

Carbonaceous chondrites have mass ratio H_O/Si _ 1.0 - 2.5 at the bulk content

of chondritic material _10 - 11 mole/mole Si (for example [4]). Therefore, in order to

get the gas with [H20]/[H2] -0.1 at evaporation of this material, it should be admixed

with 10 mole H2 per 1 mole Si or, equivalently, 1 mole hydrogen per 1 mole of bulk
chondritic (CI) material.

The gas in the surrounding solar nebula (if not dissipated by the time of

high-energy collisions) could be a source for hydrogen, but only in the case if the nebular

pressure was higher than in the explosion cloud (3). The pressure near the central plane

of the nebula in the formation region of the carbonaceous and ordinary chondrites

(R -2 AU) even at the early stage was higher than 10 .5 bar (according to all current

physical models of the solar nebula) and probably was - 10 .4 bar. These values are lower

than the average pressures in the explosion cloud (3). Therefore, the necessary pressure

relation could be reached only in a boundary layer between the explosion cloud and the

surrounding gas of the nebula. But it's possible that the gas had already dissipated from

the nebula at the time when high-velocity collisions occurred.

We'll consider another source of H2 enrichment in the gas phase of the explosion

cloud. The source could be related to a source material itself. Two possible mechanisms
can be considered.

1) The material of carbonaceous chondrites contains significant amount of carbon

and its compounds, including such volatile compounds as lower hydrocarbons, amino

acids, carbon acids et al. There is evidence on significant loss of the volatile fraction of

the organic component of chondrites during their fall onto the Earth and on the Earth's

surface (5). It seems reasonable to suggest that the most of the mass of the volatile

organic component has been lost from meteorites and their parent bodies at some stages



922 LPSC XXIV

SOURCES OF H2/H20 ENRICHMENT AT EVAPORATION; Makalkin, A.B. et al.

of evolution or during the lifetime of the solar system. The temperature inside parent

bodies of the carbonaceous chondrites could not be higher than 600-700 K in order for

hydrosilicates, and in particular chlorite, to survive. But the temperature due to some

internal or external heat sources could be well above T -300-400 K, that is in the range

300-600 K. At these temperatures, volatile organic compounds should be more or less

gradually destroyed and gaseous products of their decomposition would be lost from the

surface of a body.

If the initial abundance of volatile fraction of organics was 2 orders of magnitude

higher than observed in C chondrites, this fraction should supply 3-4 times higher content

of carbon than in observed CI chondrites and yield H20/C -1. On heating of such a

parent material to T > 1200 K during an impact event, organic carbon had enough time

to react with water released at decomposition of silicates:

c(org) + I O-. co + (1)

If the abundance of H20 was a little higher than that of C, we obtain the ratio

[H20]/[H2] , necessary for formation of the iron-rich olivine. For example, at

H20/C = 1.2 we obtain from reaction (1) [H20]/[H2] = 0.2. Taking into account also

some additional hydrogen released at decay of organic compounds with approximate

H/C _-2 ratio, we obtain [H20]/[H2] -_0.1.

2) There exists another possible source material which can produce [H20]/[H2]

_-0.1. at the impact evaporation process: it is comet-like material, but previously

depleted in water. The data on the comet material (6) yield the ratio of carbon in

organics to water ice approximately as 0.06/0.5 (by mass). When cometary-type bodies

due to gas drag and/or gravitational perturbations appeared in the inner, warmer region

of the early solar system, they lost water and other ices. Due to significant size of comet

nuclei this loss could be not completed before a high-energy impact event. After release

of -80% of water from the cometary material, we obtain H20/C -"1. This ratio leads

to [H20]/[H2] -0.1 at high-temperature process according to Eq. 1.
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